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This paper is concerned with Bayes prediction in a linear regression model when the density of the observations is given by 

where y E R”. /3 E Rk, T* > 0, Z is a positive random variable with distribution function G, $J(.) is a positive function. and 
/1.1( denotes the Euclidean norm. We show that when prior information is objective or in the conjugate family, the Bayes 

prediction density is the same as that when the density of the observations is normal, for any Z. 

1. Introduction 

This paper is concerned with the consequences on Bayes predictive inferences in regression models 
when the error terms are spherically distributed. The consequences on parameter inferences under 
this assumption have been studied by several authors, e.g., Strawderman (1974), Berger (1975) Judge 
et al. (1985), Ullah and Zande-Walsh (1985), West (1984) and Zellner (1976). The conclusion from 
these papers that is most relevant for our study is reached in Zellner (1976) where it is shown that the 
joint parameter posterior, with objective prior information, and multivariate-t errors differs from that 
obtained with multivariate normal errors. In this paper we show that predictive inferences, surpris- 
ingly, are completely unaffected by departures of the normality assumption in the direction of the 
spherically symmetric family, thus generalizing the result in Chib et al. (1987a) obtained for the 
multivariate-f case. This robustness result for Bayes prediction holds for a wide class of densities 
since the spherical family includes the density used by Zellner - the multivariate-t - as well as others 
like the multivariate normal, e-contaminated normal and multivariate exponential. 
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2. The model 

Consider the linear models with non-random regressors 

y1 = X,P + Cl, 

Y2=XzP+~*, 
(1) 

and assume that (y,, X,, X,) is observed, and interest centers on the (as yet) unobserved vector yz. 
The dimensions of y,, X,, c, are n, X 1, n, X k, and n, X 1, respectively, i = 1, 2. The unknown 
coefficient vector p is k X 1. We let y’ = ( yr’, y;) be the combined vector of dependent variables and 
similarly for the independent variables, let X’ = (X,‘, X;). Also c’ = (c;, c;) denotes the n x 1 error 
vector, n = n, + n,. Assume that the error term e has a spherical distribution which implies that the 
distribution of the observations y is spherical with density given by 

f(y]/3, r2)=~r(2n)-“i2(~2)“iL{$(z))2}li’2 expi-~i(i,~‘,,~-XuI’J dG(z). 

where Z is a positive random variable with distribution function G, I+!J(.) is a positive measurable 
function, l/72 is a scale parameter of the dispersion matrix, and 11. I/ denotes the Euclidean norm. 
Alternatively, if we let u denote a random vector with a multivariate normal density having mean 
vector 0 and covariance matrix ( T~))‘I,, then y is equal in distribution to U. $J( Z) + Xp. Thus, 
conditionally on Z, y is normal with parameters Ey l(Z, p, TV) = Xfi, and E( y - X/3)( y - 

XP)’ l(Z, P, T2) = (T2)-‘J,(z)21,> which is the integrand in (2). Consequently, integrating over the 
distribution of 2 leads to the marginal distribution of y, as in (2) above. 

Properties of the spherical distribution are developed in Kelker (1970). and summarized in 
Chmielewski (1981). We mention in passing that if Z is chi-squared with v degrees of freedom 

distributed independently of U, and \c/( Z) = (Z/v))“‘, v > 0, then y has the multivariate- 
distribution with density given by 

f(Y I P. 7*, v) = C’ (T2p2[1 + 7*/v 11 y - xp /I ‘1 -(n+“)‘2, ye R”, (3) 

where c = F((n + ~)/2)/(r(v/2)(71)“‘~). The case v = 1 results in the multivariate Cauchy distribu- 
tion. From (2) several other distributions can be similarly generated [see also Muirhead (1982, p. 

32-34)]. 
Given this structure, we find the Bayes prediction density of y2 given D. fH( yz ) D). where D 

includes the sample and prior information. This prediction density is defined as [see Atchison and 

Dunsmore (1975)] 

f’(~zlD) =j--dn- Y, 16) .n(e) do /$-(Y, 18)71(o) de> (4) 

where 0 = (p, 72) and 9 E 0 = Rh X (0, cc), and the constant of proportionality depends only on D. 

f( y2, y, 10) is the (joint) density function of (y,, y,) given 8, and a( 0) is the prior pdf of 0. 
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The first result of the paper is stated in the following proposition which shows that the Bayes 
prediction density, with spherical errors and an objective prior, is identical to that obtained with the 
multivariate normal errors. 

Throughout we let p^ = (X’X) ‘X’y and s* = 11 y - Xp^ 11 ‘/n - k denote the ordinary least 
squares estimators of ,L3 and l/r* respectively, and let SSE = 11 y - Xp^ 11 * denote the sum of squared 
errors all based on ( y, X). The corresponding quantities based on ( yr, X,) are denoted by the 
subscript 1; e.g., 

p^, = ( xx, I- l X,‘Y, and .Y: = 11 y1 - X,/?, (1’. 

Proposition I. Let the prior information on (/I, 7*) be objective, with joint pdf ~(p, 7’) a (l/7)*, 
p E Rh and T* > 0. Then the Bayes prediction density of y, given D. for any Z. is 

2(Y2 - x*&,‘[ I,,: + X2(X,‘XJ1X,‘] 3Y2 - XJ,) 1 
-(n~+~!,-~)/* 

(5) 

Proof. Clearly, 

fB(.Y21~)=~>ofR(Y21n z) dG(z). 

where 

a ( SSE)-'"-h"2, 

where the constant of proportionality depends on D but is independent of Z. Because f B( y, ) D, Z) 
= f B( y2 1 D), the random vector y, ( D is distributed independently of Z. Now using the result that 
SSE = SSE, + (y, - X2p1)‘[1112 + X2( X,‘X,)-‘Xi]-‘( y, - X,p^,) [see for example, Chib et al. 
(1987b)], (5) follows. Finally, the density in (5) is identical to that obtained in Zellner (1971) under 
the assumption of multivariate normal errors. 
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3. Extensions 

In this section we consider the case where prior information on (,O, 7’) is from the conjugate 
family of distributions relevant for the spherical density function in (2). First we point out the 
important result, which can be proved directly, that if we let $’ = TV . li/( Z))‘, then the conjugate 
prior density on (p. 7’) for the spherical family is given by 

‘db T’> = j-&‘(h&+(02) IJ(dG(z), (6) 

where 

‘ir( p, +‘) a (+2y2 ,~~p’[(p-P*)‘A*(p~/i*)l/Z (7) 

and 

is a normal-gamma prior for (/3, 72) with hyperparameters, p *, A *, 6 */2 and ~*/2. and 
1 J 1 = 1c/( Z))2 is the Jacobian of the transformation from (/3, up)’ + (p. T>). 

This is a convenient result that gives the conjugate prior for the entire spherical family of 
distributions. As an example, if we consider the case which leads to multivariate-t distribution, with 
I//(Z) = (Z/V))‘? and Z having a chi-squared distribution with v degrees of freedom, eqs. (6)-(g) 
imply that the conjugate prior pdf for (/3, T*) is 

77(p, Tz)a[ ..:t.,]A’2.[~+ (v+Tv2*T*)(A-P*).A*(8-8*) I 
-(Ais*+,,)/ 

.[ L_]“‘“‘. [, + _LJ*+“y 

Thus ~(/3. TV) is in the form of a multivariate-t pdf for /?. given r2, times an F-pdf for u2 = l/r’. 
This conjugate prior has been derived by Zellner (1976) using a different approach. 

The next result shows that the Bayes prediction density with spherical errors and conjugate prior 
(6) is identical to the prediction density with multivariate normal errors and the usual normal-gamma 
prior. 

Proposition 2. Let prior information on (/3, TV) he as in (6) with hyperparameters known or ussessed. 
Then the Bayes prediction density of y2 given D. for an-v Z, is 

f “( y, 1 D) a [( y2 - X,/I; *)‘A-‘( y, - X,/3; *) -t C] -(n2+“1+6*)‘2 (9) 

where A = I,,? + X,( A* + X(X,)-‘Xi, 

C = y;y, + ,8*‘A*p* - (A*p* + X;y,)‘( A* + X,‘X,)-‘( A*B* + X,‘y,) + v* 
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and PI * * is the mean of the pdf of p prior to obseming yz, und is given by 

p;* = (A* + X{XJ’(A*p* + x;xJ,>. 

That is, y, given D bus un n ,-variate multivariate-t density with n, + 6 * degrees of freedom, locution 

vector X2 j3 y *, and precision matrix (n, + 6 * )( AC)- ‘. 

Proof. Proceeding along the lines of Proposition 1, it can be seen that 

P **=(A*+X’X)-‘(A*p*+X’X& and R = ,B*‘A*p* + p^‘( X’X)p^- p**‘( A* + X’X)p** 

Thus, 

f B(y2 1 D, Z) c( [ ~(z)~~]““‘*)‘~J 
T2>0 

(72)(“+F*)/2p’ e-rL+~Z) 2[~*+.~~~~+~]/2 dT2 

independent of Z. The rest follows after considerable simplification of the quantities within square 
brackets. 

Note that in the limiting case when A* = 0, 6* = -k and V* = 0 the prediction density in (9) 
reduces to (5). Further, (9) can easily be seen to be identical to the prediction density obtained with 
multivariate normal errors and a normal-gamma prior for (,8, r2). 

4. Concluding comments 

This paper considers the Bayes prediction problem for a spherical linear model with both 
objectives and informative prior information and obtained the surprising result that predictive 
inferences are completely unaffected by departures from the normality assumption in the direction of 
the spherical family. In contrast, as is shown in Zellner (1976) for the multivariate-t case, parameter 
posteriors have to be modified. 
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